
Towards a Lightweight Standard Search
Language

Horst Samulowitz1, Guido Tack2, Julien Fischer1, Mark Wallace3, and Peter
Stuckey1

1 National ICT Australia (NICTA) and University of Melbourne, Victoria, Australia
2 Katholieke Universiteit Leuven, Belgium
3 Monash University, Victoria, Australia

Abstract. In this paper we propose a lightweight search language for
MiniZinc that allows a user to direct the search process by employing
explicitly defined search templates. A challenge in providing a standard
search language is to balance expressiveness with ease of implementation.
Previous work mainly introduced general frameworks that facilitate user-
defined search strategies at virtually arbitrary degrees of freedom (e.g.,
programmable search). The goal of this paper is to propose a specific set
of explicit search templates that is solver-independent, does not impose
high requirements on underlying constraint solvers, and enables users
to construct search strategies to tackle problems successfully at a suffi-
ciently abstract level by using predefined search templates. We believe a
standard for search should start small and expand as the community of
solver writers agree to implement it. The ultimate goal of this work is to
define a standard set of search templates that form a language that can
be employed across various constraint solving systems.

1 Introduction

Various frameworks to define search strategies in the context of Constraint Pro-
gramming (CP) exist, e.g., [21], [10], [12], [22] [3], [13]. However, most existing
work on search languages focuses on programming search, either declaratively
(e.g., [13]), or in a more procedural fashion (e.g., [21], [10], [12]). While those
languages give full control over search to the user, they require both the user
to actually design a particular search strategy and a tight integration with the
underlying constraint solving system. The design of search can often be a time
consuming process and consequently it is most frequently the case that only a
very limited range of possible search strategies are explored to tackle a problem
at hand. Therefore, the potentially dramatic benefits stemming from tailoring
search strategies for solving a class of real-world problems are often not fully
exploited.

One of the challenges of comparing constraint programming systems cur-
rently is that there is no standards for modelling the problem. MiniZinc [16] to
some extent overcomes this, since it is a solver-independent modelling language
that is supported by a number of CP systems. Similarly XSCP 2.1 [19] is an



instance description language supported by a number of solvers. But comparing
solvers on the same model without considering search is a rather opaque com-
parison, since differences in search strategy will usually overwhelm any other
differences in the systems. Hence it is important to be able to compare CP sys-
tems using the same search strategy. MiniZinc 1.1 [16] includes a rudimentary
search language to allow this to happen, but it is far from expressive enough.

In this paper, we propose a language for specfying search from a rich set of
predefined search templates. We will show how this makes the language much
more solver-independent, and thus more suitable for defining search in a standard
modelling language like MiniZinc. In order to achieve this goal we deliberately
keep the complexity of the proposed search language low, so that constraint
solver systems can easily support this language and will eventually result in a
standard search language. The major disadvantage of complex search languages
that are defined in e.g., [21] is that they impose high requirements (e.g., the sup-
port of an entire programming language for search) on the underlying constraint
solvers.

As we illustrate in this paper our approach still enables users to construct
reasonably complex search strategies at a negligible cost. While our approach
obviously restricts the flexibility in designing a search strategy (e.g., in compar-
ison to programmable search), it is exactly this restriction that enables us to
provide users with a modular search language that allows the exploration of a
vast range of searches without the need of programming every new search ex-
plicitly. The ultimate goal of this work is to define a set of search templates that
become a standard for designing search strategies. Once such a standard is in
place, it will also benefit the development of automated methods to configure
search strategies for a given problem (e.g., based on Genetic Programming or
Machine Learning).

The language we define here is a simple term language. While we use a
MiniZinc [16] realization of this language for this paper, it can be adapted easily
to other modelling languages such as Essence [5], Minion [6], and XCSP [19].

2 Background on Search

This section gives a brief overview on search as used in a constraint solver.
The presentation mostly follows the terminology of [21]. For a more detailed
discussion on search, see [21] [10].

2.1 Exploration Strategy

The exploration strategy defines the order in which to explore the nodes of a
search tree. The most commonly used approach in the context of constraint solv-
ing is Depth-First Search. Other exploration strategies are for instance Breadth-
First and Best-First search.



2.2 Branching Strategy

The branching strategy defines the shape of the search tree. At each inner node
of the tree, the remaining search space is partitioned, creating branches in the
tree that lead to a number of simpler problems to solve.

In constraint solvers, this choice often means selecting a particular variable,
and then picking and a particular value in its domain, splitting the domain
according to a domain splitting strategy. For instance, the first fail variable
selection strategy picks the variable with the smallest domain, and a common
splitting strategy is to assign the selected variable to its minimum on the left
branch, and to exclude the minimum on the right branch.

Different branching strategies can lead to search trees of drastically different
shape and size, and obviously also affect where solutions of the problem can be
found in the tree. For many hard problems, finding a good selection strategy is
of paramount importance for the efficiency of the solving process.

2.3 Limit Strategy

Limit strategies externally control the search process defined by exploration
and branching strategy. One of the most frequently employed limit strategies is
restarts, where search is repeatedly started over according to some dynamically
updated measures (e.g., number of encountered failures). More complex limit
strategies are for instance approaches like Limited Discrepancy Search [7].

2.4 Composition Strategy

This strategy allows different searches to be composed. For instance, sequential
search composes multiple searches, where each individual search takes places on
a subset of the variables. The searches are performed in a given, sequential order,
and all searches have to succeed in order for the sequential search to succeed.
Another composition strategy is parallel search, which runs multiple searches
in parallel, and which succeeds as soon as one of them succeeds. Additional
composition strategies are for instance approaches based on sampling (e.g., [18]).

3 A Lightweight Search Language

In this section we introduce the basic templates of the search language. These
templates can be combined to create more sophisticated searches, as we show in
the subsequent section. We start by defining the Basic Search template:

Basic Search The basic search implements a branching strategy. It is parame-
terized by decision variables, variable selection and domain splitting strategies.
A basic search template, basic search, can be one of the following:

{bool, int, set} search(vars, variable selection, domain splitting)
where vars is an array specifying the variables of the corresponding type to be as-
signed (ints, bools, or sets respectively), and variable selection and domain splitting



specify the variable selection and domain splitting strategies (which will be ex-
plained in Section 3.2). The search template dealing with float variables takes as
additional argument the desired precision and terminates as soon as the precision
is within eps:

float search(eps, vars, variable selection, domain splitting)
Note that all searches presented here are assumed to be complete (i.e., exhaustive
search) and perform depth-first search. Search applied on the empty set of vari-
ables succeeds. Section 3.1 introduces several templates that allow to manipulate
the searches introduced here.
We additionally introduce templates without the vars argument:

{bool, int, set} search all(variable selection, domain splitting)
These templates consider all bool/integer/set variables contained in a given prob-
lem instance, including auxiliary ones introduced during model transformation.
The motivation is that in empirical evaluations, branching on introduced vari-
ables (e.g., during model transformations) has often shown to be beneficial.

3.1 Exploration Strategy

The standard exploration strategy for the basic search templates presented in
the previous section is complete Depth-First search. While other exploration
strategies exist (e.g., Breadth-First search, Best-First Search) we do not choose
to support other exploration strategies at this point since most constraint solving
systems are based on Depth-First search.

3.2 Variable Selection and Domain Splitting Strategy

In this section we introduce a range of variable selection and domain splitting
strategies that can be used to control the shape of the search tree.

Variable Selection The template variable selection specifies how the next vari-
able to be branched on is chosen at each choice point (see Table 1). Note that
implicitly tie breaking based on input order takes place when several variables
have exactly the same score according to the used variable selection strategy. It
is also possible to use the default template as variable selection strategy which
results in employing the default variable selection strategy (which might differ
depending on the type of the variable).

Multiple variable selection strategies can be combined using the template
seq vss. It selects a variable according to a sequence of strategies, whose rele-
vance decreases from left to right.

seq vss([variable selection, ..., variable selection])
For instance, the following statement uses the variable selection strategy min lb
with tie breaking based on the reverse input order of the variables:

seq vss([min lb, reverse input order])
While input order is implicitly used to perform tie breaking, it is never applied
in this example. The following templates on variable ordering strategies can be



Strategy Choose variable(s). . .
{reverse }input order in the (reverse) order they appear in vars.
random order at random (based on uniform distribution)

from vars.
{min,max} {lb,ub} with the smallest/largest lower/upper

bound.
{min,max} dom size with the smallest/largest domain.
{min,max} degree that appears in the smallest/largest number

of constraints.
{min,max} {lb,ub} regret with the smallest/largest difference be-

tween the two smallest/largest values in its
domain.

{min,max} dom size degree with the smallest/largest ratio of domain
size and degree.

{min,max} dom size weighted degree with the smallest/largest ratio of domain
size and weighted degree.

{min,max} impact that caused the smallest/highest search
space reduction in the past.

{min,max} activity that has minimal/maximal activity score
(e.g., based on VSIDS).

Table 1: Proposed Variable Selection Strategies

used to combine and manipulate variable scores. Note that we implicitly assume
that variable strategies are based on numerical scores. The first template can be
used to weigh the score of the employed variable selection:

weight score(variable selection, <Weight>)
where <Weight> denotes a float number.
The score of the used variable selection is multiplied by the given <Weight>. The
resulting score is rounded to the closest integer in order to promote further tie
breaking. The second template can be used to sum multiple individual scores
and the resulting score is then used to rank the variables accordingly:

sum score([variable selection, ..., variable selection])
In order to use the weighted sum of the individual scores to rank the variables
can then be formulated as follows:

Weighted Scores
sum_score([
weight_score(<Variable_selection>, <Weight>), ...,
weight_score(<Variable_selection>, <Weight>)])

Domain Splitting The template domain splitting specifies how to split the
domain of the selected variable. Due to space limitations, the proposed strategies
are captured in Table 2 in the Appendix.

Of course, some domain splitting specifications may result in the same se-
lection strategy; e.g., bisect low and enumerate lb in bool search. A domain
splitting strategy is applied just once, and the variable may thus not yet be fixed



as a result (e.g., with domain bisection). This variable may or may not be se-
lected immediately afterwards, depending on the specified variable selection. It
is also possible to use the default template as domain splitting strategy, which
picks a default strategy that may depend on the variable type and the actual
solver that is used. In most cases domain splitting does not assign a variable
to a particular value but rather to a range in its domain. Consequently, it is
frequently the case that a variable is branched on multiple times (in contrast
to branching in e.g., a SAT solver). When employing a non-static variable se-
lection strategy this can result in branching on one variable being interleaved
with branching on other variables. In order to completely fix a value to a vari-
able before moving on to the next variable the following template can be used:
complete(domain splitting)

It is also possible to provide multiple domain splitting strategies using the
dss rand template (which is of type domain splitting). When specifying this
template a domain splitting strategy is picked at random per variable from the
specified set of strategies4. This template is in particular useful when one wants
to diversify search (e.g., when sampling the search space):
dss rand([domain splitting, ...,domain splitting])

3.3 Limit Strategy

Limited Search The template Limited Search bounds the search process by
measures like time (in seconds), number of failures or number of explored search
nodes. Limits may be nested; a search is always constrained by the tightest limit
it is scoped by. The limit template is also of type basic search.

Limited Search
limit_search(<Measure>, <Limit>, <SearchT>)

Measure can take one of the following values:
fails #conflicts solutions #solutions
nodes #search nodes time Time in seconds

While limits can be defined in a straightforward way in a non-nested context, the
semantics of limits becomes more intriguing when used in more complex search
templates like sequential/parallel search. We consider the following example to
illustrate the semantics of limits in those contexts:

Example 1: Nested Limits in Sequential Search
% Overall time limit of 20 seconds
limit_search(time, 20,
seq_search([
% Time limit of 5 seconds on the search of variables X
limit_search(time, 5, search(X, min_degree, bisect_low)),
% Time limit of 1 second on the search of variables Y
limit_search(time, 1, search(Y, min_regret, enumerate_lb))]))

4 One could also consider correlating the type of variable (e.g., based on domain size)
with particular domain splitting strategies.



The first limit (20 seconds) specifies that the entire duration of the scoped se-
quential search cannot exceed 20 seconds. The first search on the variables in X
within the sequential search template is initialized with a time budget of 5 sec-
onds. If this search fails to find an assignment to all the variables in X within 5
seconds, the sequential search template fails. If the search is able to determine an
assignment within 5 seconds (let us say 2 seconds), the sequential search moves
on to the search on the variables in Y with a time budget of 1 second. If the
search fails to find an assignment within this time budget, the search fails and
sequential search backtracks to the search on the variables in X. The remaining
time budget for the search on X is now 5 − 2 = 3 seconds. If the search on X
is able to determine an assignment within this time budget, the search on Y
is assigned again the full time budget of 1 second (if this does not exceed the
outermost limit of 20 seconds).

In general, each search has an allocated time budget. When entering a search
it is granted the minimum of the time limits it is scoped by. When backtracking
to a search, it is granted the minimal time remaining from the initial budget
reduced by the time used already by the search itself since the initial call or
the minimal time budget imposed by the limits scoping this search. Exactly the
same holds for different measures like node counts or failure counts.

For parallel search, limits are to some extent harder to deal with than with
sequential search since one needs to maintain the reduction of the time budget
caused by each of the different searches in parallel. However, no interaction
between searches within a parallel search takes place with regards to limits.

Restarting Search Any search immediately scoped by a restart template back-
tracks to the root of the search tree each time the restart condition is hit. As
with Limited Search, restarts can be defined on several measures (e.g., number
of failures). Note that in contrast to limits, restarts can appear nested but are
not scoped by other restart templates. The restart template has the format:

Restarting Search
restart_<Type>(<Type-Specific-Parameters>, <SearchT>)

The following two types of restart strategies are currently supported: Geometric
and Luby based restarts:

Geometrically Restarting Search
restart_geometric(<Increment>, <InitLimit>, <Measure>, <SearchT>)

Luby Restarting Search
restart_luby(<InitValue>, <MaxValue>, <Measure>, <SearchT>)

Search Once This template, once(<SearchT>), results in performing a given
search exactly once, removing possible choice points.

The following example shows how to define a standard search on the variables
X, then how to fix the variables Y (and not to perform backtracking on variables
in Y ) using once, and then to search on variables Z. When search on Z fails,



seq search (see subsequent section) backtracks directly over all variables in Y
to the search on X:

Example 2: Search Once
seq_search([

% Search that solves part of the problem involving X
int_search(X, min_degree, bisect_low)
% Assign value (here: lower bound) to remaining variables Y
once(int_search(Y, min_dom_size, min_lb)),
% Search that solves part of the problem involving Z
int_search(Z, min_degree, bisect_low)]).

If one wants to assign all free variables to a value according to an underlying
search template without any backtracking, this can be modeled like this:

Assign Once
once( limit(failures, 0, int_search(X, min_degree, bisect_low)))

In this example, search assigns values to variables according to the given selection
strategies. When one assignment fails, the entire search fails.

Limited Discrepancy Search This template results in restricting the scoped
search to the specified discrepancy (e.g., only 2 right branches per search) [7].

lds(<Discrepancy>, <SearchT>)
The following example shows how to use the lds search template. The search
scoped by the lds template is limited to a discrepancy of at most 1:

Example 3: Limited Discrepancy Search
lds(1, int_search(X, min_degree, bisect_low))

3.4 Composition Strategy

Sequential Search The template Sequential Search defines multiple searches
on variable subsets X1, X2, . . . , Xn of the decision variables X in the given prob-
lem instance in a particular order. Typically, X1∪X2...∪Xn = X. The searches
are executed in the specified order. If a search fails, sequential search backtracks
to the previous search in the sequence. If the first search in the sequence fails,
sequential search fails. It succeeds when all searches succeed.

Sequential Search
seq_search([<SearchT(X1)>, <SearchT(X2)>, ... <SearchT(Xn)>])

As an example consider the following sequential search template:
Example 4: Sequential Search

seq_search([
search(x, min_dom_size_weighted_degree, enumerate_lb),
search(y, min_dom_size, bisect_low)])



First search takes places on the variables in x and once all variables contained
in x have been assigned, the search on y is invoked. If the search on y fails, then
the sequential search template backtracks to the previous search on x in order
to determine a new setting of the variables in x. If there are no more feasible
assignments left among the variables in x, sequential search terminates with
failure. In order to support a portfolio approach to search this template exists:

Sequential Or Search
seq_or_search([<SearchT(X)>, <SearchT(Y)>, ... <SearchT(Z)>])

In contrast to seq search this template succeeds if one of the specified searches
succeeds. The searches are executed in the order specified in the sequence. This
allows to tackle a problem with several searches in an preferred order.

Parallel Search The searches specified inside the Parallel Search template are
invoked in parallel, and the search terminates as soon as one of the specified
searches is able to determine an answer to the given problem. If all searches
fail, the parallel search template fails. Note that all searches inside the Parallel
Search template are independent of each other and no backtracking between
searches as in sequential search takes place. Here, we do not aim at distributed
CP solving and for now we simply assume that parallel searches on the same
problem benefit from diversification (e.g., different variable selection strategies).

Parallel Search
par_search([<SearchT>, <SearchT>, ..., <SearchT>])

Sample Search The Sample Search template allows information to be passed
to variable selection strategies5 from one search to a subsequent search. The aim
of this template is to enable the collection of information relevant to a variable
ordering heuristic in order to support the concept of warm-starts (see e.g., [11]).

The sample search template takes a variable selection, and the corresponding
information is collected during the first search, which should be some form of
limited search in practice. Note that variable selection heuristics that depend on
static information only are not a sensible choice (e.g., input order).

Sample Search
sample_search(<VarChoiceT>, <SearchT>, <SearchT>)

The following is an example for an application of the sample search template:
Example 5: Sample Search

sample_search(impact,
% Sample for 5 sec. to collect information on impact scores
limit_search(time, 5,
restart_geometric(1.5, 2000.0, nodes,
int_search(x, min_lb, dss_rand([bisect_low, bisect_high]))))

% Initially use pre-initalized ranking of the variables
int_search(x, seq_vss([impact, min_dom_size]), enumerate_lb))

5 One could also consider sampling for domain splitting strategies or both.



This sample search first performs a search limited by 5 seconds that makes use
of restarts and branches on variables in x. During this first search information
relevant to the impact heuristic is gathered (e.g., search space reduction per vari-
able). The second search accesses this information to perform its initial branching
decisions. Note, however that this information is continued to be updated as in
the regular impact heuristic.

In combination with MiniZinc’s array comprehension facilities, fairly sophis-
ticated searches can be programmed. For example, consider the following search
for a radiation treatment planning problem:

Example 6: Radiation Search
seq_search([
int_search(N, min_dom_size_weighted_degree, bisect_low),
seq_search([
once(int_search([ Q[i,j,b] | j in Columns, b in BTimes],

max_activity, bisect_activity_min)) | i in Rows])])

The search first sets the pattern variables N using a dynamic variable selection
strategy. Once they are fixed, each row i in the problem is independent, and
therefore failure on one row must be caused by the search on the variables in
N , and no backtracking into other rows is necessary. The search then examines
each row in turn using a different dynamic search strategy to set the intensity
variables Q[i, j, b] for one row at a time.

Backdoor Search Informally, the backdoor search template tries to determine
a subset of variables that simplify the problem in an essential fashion once they
are fixed to a range in their domain. For a more detailed discussion on back-
doors please refer to e.g., [24]. In order to determine such variables, we here
perform a limited search to collect information on the variables in the given
problem instance. As a result, the variables are divided into backdoor variables
and remaining variables, which are then searched sequentially (see Section 3.4).

In the following specification of backdoor search, X denotes a subset of the
problem variables, and SearchT(X) denotes a normal search template. After the
limited search SearchT(X) has finished, the template backdoor vars is replaced
with the highest ranked variables in X that fall within the given ratio according
to the used variable ordering heuristic, while all other variables in X are collected
in remaining vars. Then, a sequential search is performed, first on the backdoor
variables, then on the remaining variables.

Backdoor Search
backdoor_search(<VarChoiceAnn>, <Ratio>,
limit_search(<Measure>, <Limit>, <SearchT(X)>),
seq_search([
<SearchT(backdoor_vars)>, <SearchT(remaining_vars)>]))

The following example shows an application of the backdoor template. A first
search limited by time is used to gather variable scores according to a variable



selection strategy. Then a sequential search is invoked where the top ranked
variables according to the scores of the selection strategy are searched on first,
and then all remaining variables are searched on in the second search:

Example 7: Backdoor Search
% Search that considers 10% of the variables as backdoors
backdoor_search(dom_min_weighted_degree, 0.1,

% Perform search limited by 10 seconds
limit_search(time, 10,

restart_geometric(1.05, 200.0, nodes,
search(x, min_dom_size_weighted_degree, bisect_low))),

% backdoor_vars: top 10% ranked dom_min_weighted_degree
seq_search([

search(backdoor_vars, min_dom_size, bisect_low)
search(remaining_vars, input_order, enumerate_lb)]))

4 Selecting Search Templates

As mentioned previously we want to propose a specific set of search templates
that are instances of more general frameworks for search strategies. Obviously
it is important which explicit search strategies to support, since the selected set
of templates defines the space of search strategies available to the users. This
section tries to motivate why we selected the strategies presented in the previous
sections. While we tried to cover the most important search strategies in this
first proposal, the selection of search templates is neither complete nor final.
As mentioned earlier, in our opinion a standard search language should start
small and be extended over time by the community. Having said that, we do not
actually expect nor require a constraint solving system to support all features
supported in the language (e.g., complex searches like backdoor search).

4.1 Exploration Strategies

Besides Depth-First other search exploration strategies such as Breadth-First
and Best-First search are successfully employed in a diverse area of applications
(e.g., [4]). We did not consider other exploration strategies here yet since they
impose additional requirements on the underlying solver. A number of constraint
solvers (e.g., Eclipse [22]) are intrinsically based on Depth-First search, and
therefore supporting other exploration strategies like Best-First search requires
a substantial effort by the solver developers.

4.2 Variable Selection and Domain Splitting Strategies

Most variable selection strategies that we consider here are commonly used in
constraint solvers. Lexicographic ordering and selection strategies based on vari-
able domain size and degree are among the most basic variable orderings. The



domain weighted degree heuristic [23] is a more sophisticated strategy, but still
available in many solvers. Impact [17] is a strategy successfully employed by
ILOG. Activity-based heuristics are mainly motivated by SAT (e.g., [15]).

Similarly, most considered domain splitting strategies are commonly used
in constraint solvers. All strategies that make use of randomization are mainly
introduced to enable diversification and are particularly useful for sampling a
search space. The weighted combination of variable scores to form a ranking has
also shown to be beneficial (e.g., [1]).

4.3 Limit and Composition Strategies

The concept of restarts is successfully employed in various areas (e.g., [24]) and
mainly aims at diversifying search as well as redirecting search based on gathered
knowledge during previous searches. The limit constructs enable the user to
control the search process in terms of various measures (e.g., runtime). Since
limits can also be nested they enable a fine grained control on the search process.
In addition to the basic composition strategies the sampling search construct is
mainly motivated by the concept of warm-starts (see e.g., [11]). The backdoor
search construct is motivated by work presented in [24] and the general intuition
that a problem can contain a core that when solved simplifies the remaining parts
of the problem in an essential way.

5 Requirements on the Underlying Solver

This section briefly outlines some of the requirements that the defined search
templates impose on the underlying constraint solver.

5.1 Exploration, Variable and Value Selection Strategies

The only required exploration strategy, Depth-First search, is supported by all
constraint solvers. In order to implement the proposed variable selection/domain
splitting strategies, the underlying solver needs to support a range of statistics
and measures like the following:

1. Variable Domain Size 2. Variable Regret
3. Variable Degree 4. Variable/Domain Value Impact [17]
5. Constraint Failures 6. Variable Activity
7. Current Decision Level 8. Average Search Depth

From those basic measures nearly all other variable and value ordering heuristics
can be computed by combining them using basic mathematical expressions (e.g.,
domain weighted degree [23] is composed of (1), (3), and (5)).

5.2 Limit and Composition Strategies

Since we do allow nested limited searches (e.g., imposing nested time con-
straints), some bookkeeping facilities have to be supported in order to be able to



calculate the appropriate budgets left for a particular search. Search templates
such as sequential search and backdoor search impose additional requirements on
the solver. While most requirements can be dealt with by exploiting the acces-
sibility to the measures mentioned in the previous section (e.g., for computing
a backdoor score of a variable), constructs like sequential/parallel search also
require some additional interfaces to the underlying solver. For instance, the dif-
ferent semantics resulting from introducing sequential search or limited search
(e.g., incompleteness) have to be supported.

6 Comparison to Existing Search Languages

The main difference between the work presented here and most existing search
languages is the level of abstraction. The focus of most related publications
is freely programmable search, while our goal is a library of predefined search
templates. Programmable search is, in our opinion, too expressive to become a
solver-independent standard. Our approach drastically limits expressivity, it is
aimed at being easy to implement in a wide range of constraint solvers.

The work presented here is closely related to the search specifications in
OPL, as introduced in [21]. However, OPL provides a general framework to
define search strategies that can be used to build arbitrary searches. In other
words, the search language presented here is rather a particular instance of the
general framework for search available in OPL. The IBM ILOG Script for OPL
[9] appears to be more along the lines of the work presented here, but from
the documentation provided online, it only seems to support a very limited set
of templates that control search. There are variations on the general theme of
programmable search as found in OPL. For instance, to some extent ZINC [12]
features programmable search similar to how it is done in OPL, and SALSA [10]
is an algebraic search language that is mainly concerned with describing search
trees. The work presented in [13] introduces a declarative search language. The
Tools library introduced in [3] supports the design of complex tree search algo-
rithms in the context of hybrid search methods in CP. Localizer [14] is a system
for Local Search and also provides users with control over the search process.
While basic variable selection and domain splitting strategies are available, more
complex search strategies are mainly supported by programmable search. Its
successor Comet [8] also supports CP. The platform for constraint programming
Eclipse [22] provides users with a range of search templates besides the possi-
bility of programmable search. However, Eclipse only seems to cover a subset of
the search templates proposed here in a solver dependent fashion.

7 Conclusions and Future Work

We proposed a lightweight search language that defines search templates that
can be used to guide and control search. The combination of different search
templates enables users to model more complex search strategies. We proposed
a set of search templates that are solver independent and that can easily be
supported across various different constraint solvers. Clearly, the set of search



templates is neither complete nor final, and one aim of this work is to engage
in a discussion on a standard for a search language with the community. We
have already implemented the majority of the templates proposed here in the
context of MiniZinc. In the future we plan to compare the performance achieved
by the search specified in our language to the performance of the same search
defined in the constraint solving system itself. Furthermore we are also working
on an implementation of the search language based on the work presented in
[20]. This approach will also provide an abstract implementation of the search
language that is likely to aid constraint solver developers that want to support
the language in their system.

Although the proposed search language is kept at a simple level, a few issues
remain regarding its implementation. For instance, one aim of a standard search
language is to achieve settings that allow a fair comparison of different constraint
solvers. However, due to slightly different implementations or programming lan-
guages standards even rounding/floating point errors can cause search to behave
very differently.

Local Search is often a standard component in constraint solving system (e.g.,
VLNS [2]), but it is not yet considered in the search language proposed here. This
is mainly due to the fact that the concepts underlying search here are mainly
based on systematic approaches in the sense that search starts at the root node
of a search tree and is then expanded in some order towards leaf nodes. Local
Search does not follow this pattern and therefore an integration of Local Search
requires conceptually a slightly different angle to the control of search. However,
it is feasible to design Local Search templates within our language. In addition,
developing search templates that also consider hybrid solvers (e.g., based on [3])
and support more complex interactions between for instance parallel searches
(e.g., sharing of newly inferred constraints) are desirable as well.
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{assign,exclude} {lb,ub} Assign/exclude the smallest/largest value in the variable’s
domain:
x = min{d(x)} ↙↘ x 6= min{d(x)} or
x = max{d(x)} ↙↘ x 6= max{d(x)} or
x 6= min{d(x)} ↙↘ x = min{d(x)} or
x 6= max{d(x)} ↙↘ x = max{d(x)}, resp.

{assign,exclude} mean Assign/exclude the mean value in a variable’s domain.
x = m ↙↘ x 6= m or

x 6= m ↙↘ x = m, resp., where m =
⌊

min{d(x)}+max{d(x)}
2

⌋
{assign,exclude} median Assign/exclude the median value in a variable’s domain.

x = m ↙↘ x 6= m or

x 6= m ↙↘ x = m, resp., where i =
⌊
|d(x)|+1

2

⌋
,

d(x) = {a1, ..., an} with a1 < a2 < . . . an, and m = ai.
{assign,exclude} random Assign/exclude a value uniformly6 sampled from the vari-

able’s domain.
x = r ↙↘ x 6= r or
x 6= r ↙↘ x = r, resp., where r = random{d(x)}

{assign,exclude}
impact {min,max}

Assign/exclude the value in the variable’s domain with the
minimal/maximal impact score.

{assign,exclude}
activity {min,max}

Assign/exclude the value in the variable’s domain with the
minimal/maximal activity score (e.g., based on VSIDS).

{include,exclude}
{min,max}

Include/exclude the smallest/largest uncertain domain value
of a set variable:
x = ds(x) ∪ {d} ↙↘ x = ds(x)− {d} or
x = ds(x)− {d} ↙↘ x = ds(x) ∪ {d}, resp., where
d = min{max{ds(x)} \min{ds(x)}} or
d = max{max{ds(x)} \min{ds(x)}}, resp.

enumerate {lb,ub} Enumerate values from the smallest to the largest/from the
largest to the smallest in the variable’s domain.
x = a1 ↓ x = a2 ↓ . . . ↓ x = an or
x = an ↓ x = an−1 ↓ . . . ↓ x = a1, resp., where
d(x) = {a1, ..., an} with a1 < . . . < an

bisect {low,high} Bisect the variable’s domain, excluding the upper/lower half
first.
x ≤ a ↙↘ x > a or

x ≥ a ↙↘ x < a, resp., where a =
⌊

min{d(x)}+max{d(x)}
2

⌋
,

resp.
bisect median {low,high} Bisect the variable’s domain based on the median, excluding

the upper/lower half first.
x ≤ m ↙↘ x > m or

x ≥ m ↙↘ x < m, resp., where i =
⌊
|d(x)|+1

2

⌋
,

d(x) = {a1, ..., an} with a1 < . . . < an and m = ai.
bisect random {low,high} Bisect the variable’s domain by splitting on a value selected

at random excluding upper/lower half first.
x ≤ r ↙↘ x > r or
x ≥ r ↙↘ x < r, resp., where r = random{d(x)}

bisect interval {low,high} If the variable’s domain consists of several intervals, split
the domain into the interval containing the smallest/largest
values and the remaining intervals. Otherwise perform
bisect low/bisect high on the variable’s domain.
x ∈ [a, b] ↙↘ x 6∈ [a, b] or
x 6∈ [a, b] ↙↘ x ∈ [a, b], resp., where [a, b] ⊂ d(x) and ∃.d ∈
[a, b] s.t. d = min(d(x)) or d = max(d(x)) resp.

bisect impact {min,max} Bisect the variable’s domain, excluding the half with mini-
mal/maximal impact score first.

bisect activity {min,max} Bisect the variable’s domain, excluding the half with mini-
mal/maximal activity score first.

Table 2: Proposed Domain Splitting Strategies
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